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Microglia are the resident immune cells in the brain that play a key role in driving neuroinflammation,
a hallmark of neurodegenerative disorders. Inducible microglia-like cells have been developed as an
in vitro platform for molecular and therapeutic hypothesis generation and testing. However, there
has been no systematic assessment of similarity of these cells to primary human microglia along
with their responsiveness to external cues expected of primary cells in the brain. In this study, we
performed transcriptional characterization of commercially available human inducible pluripotent
stem cell (iPSC)-derived microglia-like (iMGL) cells by bulk and single cell RNA sequencing to assess
their similarity with primary human microglia. To evaluate their stimulation responsiveness, iMGL
cells were treated with Liver X Receptor (LXR) pathway agonists and their transcriptional responses
characterized by bulk and single cell RNA sequencing. Bulk transcriptome analyses demonstrate
that iMGL cells have a similar overall expression profile to freshly isolated human primary microglia
and express many key microglial transcription factors and functional and disease-associated

genes. Notably, at the single-cell level, iMGL cells exhibit distinct transcriptional subpopulations,
representing both homeostatic and activated states present in normal and diseased primary microglia.
Treatment of iIMGL cells with LXR pathway agonists induces robust transcriptional changes in lipid
metabolism and cell cycle at the bulk level. At the single cell level, we observe heterogeneity in
responses between cell subpopulations in homeostatic and activated states and deconvolute bulk
expression changes into their corresponding single cell states. In summary, our results demonstrate
that iMGL cells exhibit a complex transcriptional profile and responsiveness, reminiscent of

in vivo microglia, and thus represent a promising model system for therapeutic development in
neurodegeneration.
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Microglia are the primary resident immune cells in the brain. Derived from a myeloid lineage, microglia fulfill
critical roles in immune surveillance and phagocytosis of cells and debris caused by injury, disease, and aging'.
Additionally, microglia play important roles in neuronal homeostasis by regulating synaptogenesis and synaptic
pruning?. Dysregulation of microglial functions are heavily implicated in neurodegenerative disorders including
Alzheimer’s disease (AD)>* and Parkinson’s disease (PD)’. Thus, studying the role of microglia in neurodegenera-
tive disorders is essential for developing effective therapies.

Currently, it is untenable to purify sufficient amounts of ex vivo human microglia from brain tissue to perform
multifaceted experiments. Additionally, microglia isolated from brain tissue undergo rapid transcriptomic and
phenotypic changes when transferred to in vitro conditions®. These challenges have facilitated the development
of protocols to differentiate iPSCs into iMGL cells”~!2. These protocols transition iPSCs through hematopoietic
precursor cells (HPCs), erythro-myeloid progenitors (EMPs), and finally into iMGL cells in culture’®. Alterna-
tively, HPCs can be transplanted into early postnatal mouse brain where they develop into microglia'*'°. These
xenotransplant microglia (xMG) more closely resemble the transcriptomic profile of ex vivo microglia than
iMGL cells, however they are difficult to produce at large scale.

The goal of this study is to assess commercially available iMGL cells, from Fujifilm Cellular Dynamics, Inc.
(Commercial iMGL cells), as a platform for functional studies and target discovery in neurodegeneration. To
characterize transcriptional and cellular heterogeneity of Commercial iMGL cells in comparison to primary
human microglia, we performed single-cell and bulk RNA sequencing of iMGLs cells and compared results with
a number of publicly available transcriptomic data. Then, to assess transcriptional responsiveness of different
iMGL cell subpopulations to known neuroprotective agents, we treated Commercial iMGL cells with two LXR
pathway agonists!’~1°.

Methods

Cell culture

Cell culture was performed as described previously!? with modifications as described below. iPSC-derived micro-
glia were obtained from FujiFilm Cellular Dynamics, Inc. (clone01279.107, lot 105093 and lot 105887). Cells were
thawed at 37 °C. Each vial was rinsed with 1 mL of culture medium (Table 1) and spun at 1000xg for 10 min. Cells
were transferred to 8 mL of culture medium and plated at a density of 5x 10* cells/cm? in a plate format based on
the cell input requirements for a given experiment. Specifically, 6-well format for single-cell and 48-well format
for bulk RNA-seq experiments. Cells were grown between 0 and 4 days in culture based on the recommended
3 day recovery period from cryopreservation (FujiFilm Cellular Dynamics, Inc.).

Immunostaining

Cells were plated on a black glass bottom 96-well plate at a density of ~30,000 cells/cm? On Day 8, cells were
washed with 1x phosphate buffered solution (PBS) and fixed with 4% paraformaldehyde in PBS for 15 min at
room temperature. Permeabilization of the cells was done with 1x PBS containing 0.25% Triton™X-100. Following
1 h blocking in 1x PBS with 5% goat serum and donkey serum at room temperature, primary rabbit anti-IBA1
(Abcam plc, Cat. No. ab178846; 1:1000), rabbit anti-TREM2 (Cell Signaling, Cat. No. D8I14C; 1:200), and rabbit
anti-P2Y12 (Thermo Fisher Scientific Inc, Cat. No. 4H5L19; 1:100) antibodies were added in the blocking solution
and incubated at 4 °C overnight. The next day, cells were washed 3 times with PBS for 5 min and stained with
donkey anti-rabbit Alexa Fluor’ conjugated secondary antibody (Thermo Fisher Scientific Inc., Cat. No. A-21206)

Culture media component Concentration Volume (mL) per 100 mL of media Vendor

pD}:gEzlcig’(si Modified Eagle Medium (DMEM)/F-12 HEPES, no 033 Thermo Fisher Scientific
N-2 Supplement 100x 0.5 Thermo Fisher Scientific
B-27" Supplement 50% 1 Thermo Fisher Scientific
10% BSA in DPBS 0.5 MilliporeSigma
1-Thioglycerol 11.5M 0.004 MilliporeSigma
Ascorbic acid 20 mg/mL 0.25 MilliporeSigma
Penicillin-streptomycin 1 Thermo Fisher Scientific
GlutaMAX® Supplement 1 Thermo Fisher Scientific
MEM Non-essential Amino Acids 100x 1 Thermo Fisher Scientific
Insulin-Transferrin-Selenium 100x 1 Thermo Fisher Scientific
Human Insulin Solution 0.05 MilliporeSigma
Recombinant Human M-CSF Protein (rhM-CSF) 100 pg/mL 0.025 PeproTech
Recombinant Human TGF beta 1 protein (rhTGFb1) 100 pg/mL 0.05 R&D Systems
Recombinant Human IL-34 (rhIL-34) 100 pg/mL 0.1 PeproTech
Recombinant human Fractalkine (rhFractalkine) 100 pg/mL 0.1 PeproTech
Recombinant human CD200 (rhCD200) 100 pg/mL 0.1 Acro Biosystems

Table 1. Composition of culture medium.
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at 1:500 for 1 h at room temperature in the dark. After secondary antibody staining, cells were washed 3 times
with PBS and imaged on a Zeiss' LSM 710 microscope. Images were segmented and quantified using CellProfiler™.

RNA isolation, cDNA synthesis, and bulk RNA sequencing library preparation

For bulk RNA sequencing experiments, medium was removed and cells were lysed directly on plate in RNA
lysis buffer and processed using the MagMAX' mirVana Total RNA Isolation Kit (Thermo Fisher Scientific Inc.,
Cat. No. A27828) according to the manufacturer’s instructions. cDNA was generated from total RNA using
SuperScript IV Reverse Transcriptase (Thermo Fisher Scientific Inc., Cat No. 18090050). Bulk RNA-seq library
preparation was performed with 500 ng of total RNA using the NEBNext Poly(A) mRNA Magnetic Isolation
Module (New England Biolabs, Inc., Cat. No. E7490) and NEBNext Ultra™ Directional RNA Library Prep Kit
for Illumina” (New England Biolabs, Inc., Cat. No. E7420). All libraries were dual-indexed using 12 cycles of
PCR amplification using NEBNext” Multiplex Oligos for Illumina’ Dual Index Primer Set (New England Biolabs,
Inc., Cat. No. E7600). Library quality control was performed by measuring concentration with Qubit’ dsDNA
HS Assay Kit (Thermo Fisher Scientific Inc., Cat. No. Q32854) and fragment size distribution with the Agilent’
High Sensitivity DNA Kit (Agilent Technologies, Inc., Cat. No. 5067-4626). Libraries were sequenced as paired-
end 150 x 150 bp on a NovaSeq” 6000 System (Illumina, Inc.).

Single cell RNA-sequencing library preparation

Single cell experiments were performed in parallel with the bulk RNA-seq experiments described above. Cells
were first washed with PBS, then trypsinized for 10 min at 37 °C using TrypLE Express Enzyme (Thermo Fisher
Scientific Inc., Cat. No. 12604013). Trypsinization was halted by the addition of equal volume of warm medium,
cells were spun at 1000xg for 10 min and resuspended in 0.04% PBS/bovine serum albumin (BSA). Trypan blue
was used to assess cell number and viability (>85% in all cases, typically >90%) using a Cellometer  automated
cell counter (Nexcelcom Bioscience, LLC). Gel bead-in-emulsion (GEM) encapsulation and single cell indexing
reactions were performed using a Chromium™ Controller instrument (10x Genomics, Inc., Cat. No. 1000202,
version 3.1 chemistry). Single-cell 3’ RNA-seq libraries were prepared using the Chromium™ Next GEM Single
Cell 3 GEM, Library and Gel Bead Kit (10x Genomics, Inc., Cat. No. 1000121), according to the manufacturer’s
instructions, specifically targeting 2-3000 cells per replicate and 13 rounds of PCR amplification. Technical
replicates were processed independently from trypsinization through sequencing (cells thawed together then
plated in independent wells). Libraries were sequenced on a NovaSeq 6000 System, with paired end 150 x 150 bp
sequencing.

LXR agonist treatment

Cells were plated at 150,000 cells per well on 24-well plates in culture medium. After 24 h at 37 °C, medium was
replaced with fresh medium. At day 3, cells were treated with either dimethyl sulfoxide (DMSO) or different doses
(30 nM or 100 nM) of T0901317 (MedChemExpress LLC, Cat. No. HY-10626) and GW3965 (30 nM or 300 nM)
(MedChem Express LLC, Cat. No. HY-10627A) and incubated for 24 h. After 24 h, medium was discarded, and
cells were directly lysed on the plate for RNA extraction using the MagMax mirVana Total RNA Isolation Kit.
Bulk and single cell RNA sequencing were performed as described above.

Time course bulk RNA-seq processing

FastQ files were downloaded from 5 external datasets of microglia related samples®!4!>2%2! (Accession num-
bers—Gosselin: dbGaP phs001373.v2.p2, Olah: Synapse syn11468526, Galatro: GEO GSE99074, Hasselmann:
GEO GSE133432, Svoboda: GEO GSE139194). Samples were removed with less than 10,000,000 reads. FastQ
files were processed through a uniform RNA-sequencing pipeline. Briefly, reads were aligned to the hg38 genome
with STAR* and RSEM was used® to quantify the expression of genes in transcripts per million (TPM) using
Gencode annotation version 24%. Samples were removed with less than 60% alignment rate after mapping. For
external datasets downloaded from literature sources, paired-end samples were removed with greater than 50%
duplicate read fraction after mapping. Ribosomal and mitochondrial genes were removed, those that start with
“RP” or “MT”. Gene expression values were transformed into log2 (TPM +0.01) to stabilize the variance. This
dataset was used for the assessment of progenitor and monocyte markers. For principal components analyses
(PCA) and the assessment of key transcription factors (TFs), marker genes, and disease genes, lowly expressed
genes with a median TPM < 1 were removed, leaving a dataset of 12,392 genes. ComBat* was used to correct for
batch effects using the dataset source as the correction factor.

Principal components analysis

The set of all expressed genes was used as features to run PCA. Before running PCA, the expression levels of
each gene were scaled across samples by subtracting the mean value and dividing by the standard deviation.
PCA was run using the prcomp function in R. For the quantitative comparison in Fig. 1D, Euclidean distances
were calculated between all pairs of samples using their loadings on PC1 and PC2 with the pdist function in R.

Statistical comparison of cell sources using PCA

For the statistical analysis in Supplementary Fig. 3, PCA was run separately across all pairs of cell sources. For
each independent pair, meaningful principal components (PCs) were identified which explained a greater pro-
portion of variance than random noise. One hundred permutated datasets were created by randomly shuffling
sample labels for each gene and the variance explained by the top PC in each permutated dataset was calculated.
A threshold for variance explained by meaningful PCs was defined as 2 standard deviations above the mean value
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Figure 1. Gene expression comparison between Commercial iMGL cells and microglia-related datasets. (A)
Representative immunofluorescence images of Commercial iMGL cells stained with IBAI or P2Y12 (green)
and DAPI (blue). The scale bar represents 20 um. (B) This study performed bulk and single cell transcriptional
profiling of Commercial iMGL cells between 0 and 4 days in culture. (C) PCA clustering using top 2 PCs for
Commercial iMGL cell samples and microglia comparator datasets. Variance explained by each principal
component is shown in parenthesis. (D) Euclidean distances for all pairs of samples between ex vivo microglia
and each of the other microglia groups. Euclidean distances were calculated using sample loadings on PC1 and
PC2. (E) Comparison of gene expression levels for key microglia TFs, core marker genes, and disease risk genes
between Commercial iMGL cells at Days 1-4 and ex vivo microglia. Expression levels displayed are the median
values across samples. (F) Comparison of gene expression levels for HPC and EMP progenitor and monocyte
markers between Commercial iMGL cells at Days 1-4, ex vivo microglia, and monocytes. Expression levels
displayed are the median values across samples.
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for the top component across the 100 permuted datasets. Sample loadings on the meaningful PCs were used to
quantitatively access separability for the pair of datasets using 2 methods: SigClust? and Silhouette?”. The SigClust
score was calculated using the sigclust package in R. The Silhouette score was calculated using the cluster package
in R. One hundred permuted datasets were generated by shuffling the sample labels for the meaningful PCs and
re-running the 2 methods. For each method, an empirical p-value was calculated to assess the significance of
dataset separability by identifying the proportion of permutated datasets with a larger separability score then the
actual score. In the case of Sigclust, this was the proportion of permutated datasets with a lower score, because
lower SigClust scores correspond to greater separability. For Silhouette, this was the proportion of permutated
datasets with a higher score, because higher Silhouette scores correspond to greater separability.

Time course single cell RNA-seq processing

FastQ files for each single cell RNA-seq sample were processed using Cell Ranger (10x Genomics, Inc.) to gen-
erate count matrices of genes per cell. Count matrices were processed for downstream analyses using Seurat
version 3.2%. Low quality cells were removed, potentially empty droplets or doublets by imposing the following
filtering criteria for each cell: number of genes detected > 1500, number of reads per cell <100,000, and mito-
chondrial RNA (mtRNA) fraction <20%. We also filtered any genes that were detected in less than 3 individual
cells. This left us with a dataset of 18,426 genes across 31,984 cells collectively. Gene expression values were
log-transformed using the NormalizeData function and the top 2000 variable genes were identified using the
FindVariableFeatures function. Expression levels for each gene were scaled and centered using the ScaleData
function. Louvain clustering was performed with the top 20 principal components using the FindNeighbors
and FindClusters functions with a resolution parameter of 0.4. For visualization, the variance across the top 20
principal components was reduced into 2 Uniform Manifold Approximation Projection (UMAP) dimensions
using the RunUMAP function. For cells in each cluster, preferentially expressed marker genes were identified
using the FindAllMarkers function with the following criteria: adjusted Wilcox p-value <0.01, detected percent-
age>40%, and log,(fold-change) > 0.6. GO enrichment analyses was performed for the marker gene sets using
the clusterProfiler package in R%.

Single cell RNA-seq integration analysis

Single cell RNA-seq integration was performed on the time course dataset with two ex vivo microglia datasets
using Seurat version 4.3°2. The cell by gene count matrices and cell cluster identities were downloaded for each
dataset (Olah: https://github.com/vilasmenon/Microglia_Olah_et_al_2020, Sankowski: https://github.com/rsank
owski/sankowski-et-al-microglia) and loaded into separate Seurat objects. Prior to integration, for each dataset,
gene expression values were normalized, and the top 2000 variable genes were identified as described above.
Data integration was performed using the functions SelectIntegrationFeatures and FindIntegrationAnchors.
For visualization, the variance across the top 30 principal components was reduced into 2 UMAP dimensions
as described above.

30,31

LXR agonist treatment bulk RNA-seq processing

FastQ files were processed as described above. Differential gene expression analysis was run using the DESeq2
package in R*. The DESeq function was used to perform median of ratios normalization of the count data.
Four contrasts were run: GW3965 30 nM vs DMSO, GW3965 300 nM vs DMSO, T0901317 30 nM vs DMSO,
and T0901317 100 nM vs DMSO. To identify DEGs, the following criteria were used: absolute value of log, fold
change > 0.6, adjusted p-value < 0.05, and the maximum TPM value across samples > 1. The enrichR package in
R** was used to run pathway enrichment analysis. For each contrast, both up- and downregulated DEGs were
mixed and run against public databases including KEGG_2019_Human, GO_Biological_Process_2018 and Reac-
tome_2016. The significance of the enrichment and overlapping genes were generated by the enrichr function
for each pathway. Significantly enriched pathways were identified with an adjusted p-value <0.05.

LXR agonist treatment single cell RNA-seq processing

FastQ files were processed as described above. After filtering of low quality cells, we started with a dataset of
19,517 genes in 43,312 cells, collectively. Data normalization and clustering were performed as described above,
expect we used a resolution parameter of 0.2 for Louvain clustering. For each of the 4 contrasts, DEGs were
identified in each cluster using the FindAllMarkers function with the following criteria: absolute value of log,
fold change > 0.6, adjusted Wilcox p-value <0.05, and percentage of detected cells > 10%. Pathway enrichments
were identified as described above.

Results

Comparison of Commercial iMGL cell bulk transcriptome data with publicly available primary
microglia-related datasets

We verified expression of microglia markers IBA1, P2Y12, and TREM2 on Commercial iMGL cells by immu-
nostaining (Fig. 1A and Supplementary Fig. 1) and quantified > 99% of cells as positive for each marker (“Meth-
0ds”). Bulk RNA sequencing was performed on cells grown between 0 and 4 days in culture (Fig. 1B and “Meth-
0ds”). As comparator datasets, we collected published bulk RNA sequencing data from five studies®!+1>20:21,
encompassing three human primary microglia datasets (ex vivo), two alternative iMGL cell datasets, two xMG
datasets, one in-vitro cultured human primary microglia dataset, and one human ex vivo monocyte dataset
(Supplementary Table 1). For all RNA sequencing samples, we started with FastQ files, processed them using a
uniform pipeline, and performed batch correction to minimize sources of technical variation between datasets
(“Methods” and Supplementary Fig. 2). We noticed that Commercial iMGL samples from day 3 have higher
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duplicate read ratios than samples from the other days (Supplementary Table 1), indicative of technical differ-
ences in these samples during library preparation.

To assess genome-wide patterns in gene expression, we conducted principal components analysis (PCA)
with all expressed genes. We found that xMG and Commercial iMGL cell samples are more closely related to
ex vivo microglia than alternative iMGL cells, in vitro cultured microglia, and monocytes by visual (Fig. 1C)
and quantitative (Fig. 1D) comparisons using the top two principal components (PCs). We also examined two
different similarity metrics, SigClust and Silhouette index, with all PCs above noise, which has been determined
by permutation tests (“Methods”). The overall similarity was observed in both metrics used (Supplementary
Fig. 3). These results demonstrate that the overall expression profile is similar between ex vivo microglia and
Commercial iMGL cells.

Next, we compared the expression of key microglia TFs®, core marker genes associated with microglia
functions®, and AD risk genes37 between the datasets. We found the expression of most TFs, marker genes, and
disease genes to be similar between ex vivo microglia and Commercial iMGL cells (Fig. 1E and Supplementary
Fig. 4). However, there are differences including lower expression of SALLI and higher expression of SPPI in
Commercial iMGL cells. Loss of SALL1 expression and increase in SPP1 expression have been associated with
an increase in inflammation and phagocytic activity in mouse microglia®®*, suggesting that Commercial iMGL
cells might have an elevated level of microglial activation. We also assessed the expression of iPSC, HPC, and
EMP marker genes as well as monocyte enriched marker genes?"* (Fig. 1F and Supplementary Fig. 4). We found
moderate expression of monocyte markers as well as multiple progenitor markers including HBEI, GATA1I,
GATA2, GYPA, MYB, and KIT, suggesting the presence of a progenitor subpopulation within the Commercial
iMGL cell culture. Taken together, these results demonstrate that Commercial iMGL cells largely recapitulate
the basal transcriptional profile of ex vivo microglia.

Single cell transcriptomics identifies multiple subpopulations of cells within Commercial iMGL
cells

Microglia exhibit a variety of transcriptional states in response to the local environment®"**. These states are
indicative of individual microglia performing different roles including surveillance and neuronal homeostasis
(homeostatic microglia) as well as inflammatory response and phagocytosis (activated microglia). To character-
ize the heterogeneity of Commercial iMGL cells in culture, we performed single-cell RNA sequencing on cells
grown between 0 and 4 days in culture (Fig. 1B and “Methods”). After removing low quality cells (Supplementary
Fig. 5), we generated a dataset of 31,984 cells. Using de novo clustering, we identified 11 clusters of cells within
Commercial iMGL cell cultures (Fig. 2A and Supplementary Data 1). To assign functional states for each cluster,
we assessed the expression patterns of genes, from a single cell study of human primary microglia, that mark
important aspects of microglial biology including antigen presentation, complement pathway, immune activation,
and cell cycle®® (Fig. 2B and Supplementary Fig. 6). Additionally, we generated gene ontology enrichments of
differentially expressed cluster marker genes (“Methods”, Supplementary Table 2, and Supplementary Figs. 7, 8).
We identified 4 clusters, C1, C3, C7, and C10, indicative of homeostatic microglia with high expression of genes
involved in antigen presentation and complement pathways. We identified 5 clusters, C2, C4, C5, C8, and C9,
indicative of activated microglia with high expression of immune related genes. Among activated microglia, 2
clusters, C2 and C5, have high expression of immediate-early genes which are rapidly induced upon stimulation®'.
Among homeostatic and activated microglia, we identified 3 clusters of proliferating cells, C3, C7, and C9 with
high expression of cell cycle genes. In concordance with bulk expression patterns (Fig. 1F), we identified 1 cluster,
Cl11, corresponding to myeloid progenitors (Supplementary Fig. 9). Reassuringly, the proportion of total cells
within C11 is less than one percent (Fig. 2C), demonstrating the low prevalence of incompletely differentiated
cells. Of note, AD risk genes were differentially expressed across clusters (Supplementary Fig. 10), supporting
the roles of multiple microglia functions and pathways in the etiology of AD*2.

We directly compared the single cell transcriptomes of Commercial iMGL cells with two ex vivo microglia
single cell RNA-seq datasets®**! (“Methods”). The two ex vivo datasets integrate tightly together, with the Com-
mercial iMGL cells located around the periphery (Fig. 2D). On the UMAP projection, functionally similar ex vivo
and Commercial iMGL cell clusters have some intermixing (Fig. 2D and Supplementary Fig. 11). Activated Com-
mercial iMGL clusters C2 and C8 are overlapping with activated ex vivo clusters Olah-5, Olah-6, Sankowski-1,
and Sankowski-9. Proliferative Commercial iMGL clusters C3 and C7 are overlapping with proliferative ex vivo
cluster Olah-9. These results demonstrate that Commercial iMGL cell clusters recapitulate the diverse cellular
states of ex vivo microglia. The Commercial iMGL cell cluster transcriptional profiles closely resemble, but are
not equivalent to, those of ex vivo microglia.

The proportion of cells within each cluster was dynamic over the 4-day time course (Fig. 2C). One cluster, C6,
with high expression of homeostatic and activated marker genes (Fig. 2B), was only present at DO and indicative
of freshly thawed cells. The proportion of homeostatic microglia in cluster 1, those not expressing proliferating
markers, increased over time in culture from 15% of cells at day 1 to 35% of cells at day 4. In contrast, the pro-
portion of proliferative homeostatic microglia in cluster C3 was relatively stable between 1 and 4 days in culture.
The proportion of activated microglia in cluster C4, those not expressing immediate-early genes, increased
over time in culture from 5% at day 1 to 30% at day 4, while the proportion of activated microglia expressing
immediate-early genes in cluster C2 decreased over time in culture from 40% at day 1 to 10% at day 4. Overall,
the proportion of microglia subpopulations changes substantially over time in culture, approaching steady state
between days 3 and 4.
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Figure 2. Single cell RNA-seq profiling of Commercial iMGL cell cultures. (A) Identification of 11 cellular
clusters in Commercial iMGL cell cultures. Functional annotations were assigned based on the expression

of microglia functional marker genes as described in the “Methods” and shown in (B). (B) Gene expression
heatmap of selected microglia functional marker genes in the time course single cell RNA-seq dataset. Heatmap
with a more comprehensive list of marker genes is shown in Supplementary Fig. 6. (C) Proportion of cells in
each cluster in the time course single cell RNA-seq dataset. (D) Integration of Commercial iMGL single cell
RNA-seq dataset with two published ex vivo microglia single cell RNA-seq datasets (Olah and Sankowski).
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Robust bulk transcriptional response of Commercial iMGL cells to LXR pathway agonists

To assess the transcriptional responsiveness of Commercial iMGL cells, we selected two structurally distinct LXR
pathway agonists: T0901317 and GW3965 (Fig. 3A)*#4. LXRs are lipid responsive TFs that form heterodimers
with retinoid X receptors (RXRs) to regulate expression of key cholesterol homeostatic genes involved in AD*.
In microglia, LXR agonists repress microglial activation by inhibiting nitric oxide production and nuclear factor-
kappa B activity*>*’. LXR agonists are potential therapeutic targets for neurodegenerative disorders and have
previously been shown to reduce amyloid plaque burden, ameliorate neuroinflammation, and improve memory
in preclinical AD models'’™*.

We treated Commercial iMGL cells with each LXR agonist starting on day 3 of in vitro culture and performed
bulk RNA sequencing to assess their transcriptional responses 24 h later (“Methods” and Supplementary Table 3).
We selected two doses of each compound to evaluate the consistency of responses across a dose curve which is an
important aspect of developing a transcriptomic bioassay*®*°. We found a marked increase in expression of the
established LXR pathway target genes®® ABCA1, ABCGI, and APOE (Supplementary Fig. 12). We systematically
identified differentially expressed genes (DEGs) for each treatment (“Methods”). We identified 296, 677, 227,
and 538 DEGs for GW3965 30 nM, GW3965 300 nM, T0901317 30 nM, and T0901317 100 nM, respectively
(Supplementary Table 4). In all four stimulus conditions, ABCAI and ABCGI were among the most highly
upregulated genes, as expected with stimulation of the LXR pathway (Fig. 3B,C and Supplementary Fig. 13).
Additionally, for both compounds, the expression level of DEGs was dose-dependent, and almost all the DEGs
identified at the lower dose were also identified at the higher dose (Supplementary Fig. 14). Comparing between
the two compounds, we found highly overlapping lists of DEGs (Fig. 3D) and high concordance in gene fold
changes (Supplementary Fig. 15), suggesting that both compounds are modulating the same cellular pathways.
We ran gene ontology and pathway enrichments for the DEGs identified in each of the 4 stimulus conditions
(Supplementary Tables 5-8). We found similar pathway enrichments in both compounds with upregulated genes
enriched in lipid metabolism processes and downregulated genes enriched in cell cycle, extracellular matrix,
and inflammatory processes (Fig. 3E,F). Overall, Commercial iMGL cells exhibited robust bulk transcriptional
responses to LXR agonists.

Differential transcriptional responses to LXR pathway agonists across Commercial iMGL cell
subpopulations

To assess changes in subpopulation abundances and cell-to-cell heterogeneity in transcriptional responses of
Commercial iMGL cells to LXR pathway agonists, we performed single cell RNA sequencing (“Methods”). After
removing low quality cells (Supplementary Fig. 16), we generated a dataset of 43,312 cells. Using Louvain clus-
tering, we identified 6 clusters of cells (Fig. 4A and Supplementary Data 2) and matched their identities to the
previously identified Commercial iMGL cell subpopulations (Fig. 2A) using a set of microglia functional marker
genes’! (Supplementary Fig. 17). In general, the subpopulation abundances are unchanged between untreated and
LXR agonist treated samples (Fig. 4B). There is a slight reduction in the proportion of proliferative homeostatic
cells in cluster C3 which is consistent with the finding that downregulated genes in bulk RNA-seq are enriched
within the cell cycle pathway (Fig. 3E,F).

We identified LXR agonist induced DEGs for each cluster (“Methods”, Supplementary Fig. 18, and Supple-
mentary Table 9). First, we compared the DEG responses between high and low doses for each treatment within
the same cluster. In general, fold change differences correlate with dose for each treatment (Supplementary
Fig. 19). We noticed that clusters C1, C3, and C4 show higher correlations between doses than cluster C2, C8,
and C10, for both treatments, suggesting that Commercial iMGL cell subpopulations have differing sensitivities
to LXR agonists. Comparing between the two compounds, we found highly overlapping lists of DEGs within each
cluster (Supplementary Fig. 20), and similar gene ontology and pathway enrichments (Supplementary Table 10).

Next, we compared the responses between bulk and single cell RNA-seq to evaluate the performance of the
two technologies in identifying LXR agonist induced DEGs. In general, the gene expression changes detected
by bulk and single cell analysis are quite similar (cor=0.7-0.81). However, there are many genes that exhibit dif-
ferences in fold-changes between the two technologies (Supplementary Fig. 21). The number of DEGs is greater
in bulk as compared to single cell, however there is substantial overlap between the two methods (Fig. 4C,D
and Supplementary Fig. 22). We found that DEGs detected by bulk only exhibit lower expression levels in the
single cell RNA-seq dataset when compared to DEGs detected by both methods (Supplementary Fig. 23). This
finding is consistent with previous reports showing that identification of lowly expressed DEGs by single cell
analysis is challenging®.

Finally, we compared the DEG responses for the high dose of each compound between the four major clusters
C1, C2, C3, and C4. Between clusters, the gene expression responses were positively correlated, however the fold
change extents were different (Supplementary Fig. 24). We found that the transcriptional response in cluster
1 was more comparable to cluster 3 (cor=0.74-0.77) than cluster 2 and cluster 4 (cor=0.52-0.64), which sup-
port our previous characterization of C1/C3 and C2/C4 as representing homeostatic and activated microglia,
respectively. We compared the set of DEGs across different clusters in each treatment and found substantial
differences in DEGs across clusters, with a particular emphasis on a large number that are specific to cluster C4
after GW3965 300 nM (Fig. 4E,F) and T0901317 100 nM treatments (Supplementary Fig. 25). One example of a
gene with differential transcriptional responses across clusters is ACSLI. The expression of ACSLI is upregulated
in cluster C4 (FC=3.16-3.38), in response to both compounds, whereas its expression is unchanged in clusters
C1, C2and C3 (FC=1.11-1.42) (Fig. 4G,H). ACSLI is significantly upregulated in bulk RNA-seq (FC=2.6-2.75)
(Supplementary Table 4), and the single cell dataset demonstrates that the bulk RNA-seq change in ACSL1 is
predominantly driven by activated microglia cells in cluster C4. Similarly, we sorted the full list of bulk DEGs

Scientific Reports |

(2024) 14:2153 | https://doi.org/10.1038/s41598-024-52311-0 nature portfolio



www.nature.com/scientificreports/

A

Transcriptional response

LXR pathw ni
©
T0901317: =l ?l

GW3965: 2
N
C 70901317 100nM
NR1H3- ~PLTP
2300 80 BT pecoy
ABCDTs o ABCA1
CXCR4
.
g a
= 2001 :
g :
L J
> A
o N
o o °e-CACNB1
o MGLL we o KCNMAT
. . Iy
(_ID 100- . UHRF}. ’:' o, -PKD2L1
GPD1 . 2% LILRB4 JAKMIP2
SYT2 o S, 07, JTNC
T o s * " 4 CARD4
b ¢
. (g o CD226 iy
0 4 RDM1e, ¢ L o,% RP11-565P22.6
“FABP6

-6 -3 0 3 6
log, fold change

Enriched pathways for GW3965 300nM

Upregulated Metabqlism of Iipids 511 e-9
and lipoproteins
Lipid digestion, mobili-
Upregulated zation, and transport l2el
Downregulated Cell Cycle 3.02 e-14
Downregulated Cris-cpecite 1.11e-8

Transcription

B GW3965 300nM
300 oy L,
1 = —+ABCA1
ABCD1 © NRTHS  pgegy
CXCR:
ACSL3®
5
S
= 200
> >
.
o R
“PKD2L1 cpARD 14
o w80 epiar CAR
2 TIMP3 .
. . e ¢ LILRB4
o) GPD1 o TR
© 100 st ow
! ATP10A &
°'.. Y ] . OAF. MYLIP
o J
sYi2 cegt % °, ©-SPON2 LN
MMP13 o % 0%, | CD226 .
ROMI « * oo’ *JAKMIP2
0 A o o s ©—-FABP6
T

-6 -3 0 3 6
log, fold change

GW3965
300nM

TO901317
100nM

Enriched pathways for T0901317 100nM

F

Upregulated ~ Metabolismof lipids 5 51 ¢ g
and lipoproteins
Upregulated PR Sigeling 2.40 e-5
pathway
Downregulated Cell Cycle 2.46 e-6
Downregulated CE-Epzaiio 2.61e-6

Transcription

Figure 3. Bulk transcriptional responses of Commercial iMGL cells to LXR agonist treatment. (A) Chemical
structures of LXR pathway agonists GW3965 and T0901317. (B) Volcano plot showing relationship between
expression fold change and significance for differential gene expression between GW3965 300 nM and DMSO
treated cells. Genes with significant upregulation and downregulation in GW3965 300 nM are colored red
and blue, respectively. (C) Volcano plot showing relationship between expression fold change and significance
for differential gene expression between T0901317 100 nM and DMSO treated cells. Genes with significant
upregulation and downregulation in T0901317 100 nM are colored red and blue, respectively. (D) Overlap in
DEGs between GW3965 300 nM and T0901317 100 nM treatments. (E) Selected pathway enrichments for
DEGs with GW3965 300 nM treatment. (F) Selected pathway enrichments for DEGs with T0901317 100 nM

treatment.
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into their corresponding single cell clusters (Supplementary Table 11). These findings demonstrate that different
subpopulations of iMGL cells exhibit heterogeneous transcriptional responses to LXR agonists.

Discussion

Microglia play important roles in the pathogenesis of neurodegenerative disorders. A substantial increase in
neuroinflammation mediated by microglial activation and proliferation is a hallmark of late stage neurodegen-
erative disorders including AD, PD, and frontotemporal dementia®?. Two of the most prominent genetic risk
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«Figure 4. Single cell transcriptional responses of Commercial iMGL cells to LXR agonist treatment. (A)
Identification of 6 single cell clusters in LXR agonist treated Commercial iMGL cells. Cluster names were
matched to the time course single cell RNA-seq dataset (Fig. 2A) using microglia functional marker genes
(Supplementary Fig. 17) as described in the “Methods”. (B) Proportion of cells belonging to each single cell
cluster in the LXR agonist treatment single cell RNA-seq dataset. Treatments are abbreviated: DMSO, GW3965
30 nM (GW30), GW3965 300 nM (GW300), T0901317 30 nM (T30), and T0901317 100 nM (T100). (C)
Overlap in upregulated DEGs between bulk RNA-seq and the union of single cell RNA-seq DEGs in clusters C1,
C2, C3, C4, C8, and C10 with GW3965 300 nM treatment. Bulk DEGs were filtered to genes tested in at least
one single cell contrast. (D) Overlap in downregulated DEGs between bulk RNA-seq and the union of single
cell RNA-seq DEGs in clusters C1, C2, C3, C4, C8, and C10 with GW3965 300 nM treatment. Bulk DEGs were
filtered to genes tested in at least one single cell contrast. (E) Overlap in upregulated DEGs for single cell clusters
Cl1, C2, C3, and C4 with GW3965 300 nM treatment. (F) Overlap in downregulated DEGs for single cell clusters
C1, C2, C3, and C4 with GW3965 300 nM treatment. (G) Expression of ACSLI gene in single cells assigned to
clusters C1, C2, C3, and C4 from DMSO, GW3965 300 nM (GW300), and T0901317 100 nM (T100) treatments.
(H) Fold change of ACSLI gene compared to DMSO in single cells assigned to clusters C1, C2, C3, and C4 from
GW3965 300 nM (GW300) and T0901317 100 nM (T100) treatments.

factors for late onset AD, APOE and TREM2, are highly expressed in microglia and are important regulators of
cholesterol metabolism and transport in the brain®. Therefore, in vitro models, such as iMGL cells, are essential
tools for preclinical development. Multiple studies have shown that iMGL cells have transcriptional profiles
that are highly similar to ex vivo microglia'>!>**-%8, In this study, we find that iMGL cells, from Fujifilm Cellular
Dynamics, Inc., are an attractive commercial option.

Currently, multiple therapeutics targeting APOE and TREM2 in microglia are in development for AD*-¢!,
including LXR pathway agonists®. This is the first study to perform a comprehensive bulk and single cell tran-
scriptional characterization of LXR agonists on iMGL cells. At the bulk level, we find an upregulation of lipid
metabolism pathways, consistent with previous findings that positive effects of LXR agonists on AD pathology
in preclinical models are largely due to the induction of ABCA1 expression, which promotes cholesterol clear-
ance and APOE lipidation'”**. Interestingly, at the single cell level, we identified heterogeneous responses across
subpopulations of iMGL cells including a prominent response in activated microglia. We found a downregulation
of inflammatory response pathways, consistent with a previous report that treatment of mouse microglia-derived
cell line BV2 with GW3965 causes an attenuation of neuroinflammation®.

Although Commercial iMGL cells show promising potential, they do not completely recapitulate all aspects
of microglial biology. The transcriptional factor SALLI, an important determinant of microglia identity®, is not
expressed in Commercial iMGL cells (Fig. 1E and Supplementary Fig. 4). However, xenotransplant microglia
exhibit expression of SALLI, indicating that iMGL cells have the potential to turn on the SALLI-mediated
transcriptional program (Supplementary Fig. 4). Moving forward, optimization of differentiation protocols and
culture media components as well as further methods development, including direct cell conversion®, will
continue to make iMGL cells an attractive model system for therapeutic development in neurodegeneration.

Conclusions

In this study, we performed comprehensive bulk and single cell transcriptional characterization of Commercial
iMGL cells. We find that Commercial iMGL cells closely resemble ex vivo microglia at the overall transcriptome
level and express most, but not all, key microglia marker genes. We identified 11 subpopulations of cells repre-
senting homeostatic, activated, and proliferating states, replicating the heterogeneity of ex vivo microglia®**!.
Commercial iIMGL cells stabilize after 3 days in culture and we treated them with two distinct LXR pathway
agonists to assess their transcriptional responsiveness. At the bulk level, Commercial iMGL cells respond by
upregulation of lipid metabolism pathways and downregulation of cell cycle pathways. At the single cell level, the
transcriptional responses differ between homeostatic and activated microglia. Overall, our results demonstrate
that Commercial iMGL cells exhibit a basal transcriptional profile, cellular heterogeneity, and transcriptional
plasticity that is comparable to in vivo microglia.

Data availability
Raw and processed data from bulk and single cell RNA sequencing experiments have been deposited in the NCBI
Gene Expression Omnibus (GEO) under accession number GSE226081.

Received: 18 May 2023; Accepted: 17 January 2024
Published online: 25 January 2024

References

1. Salter, M. W. & Stevens, B. Microglia emerge as central players in brain disease. Nat. Med. 23, 1018-1027 (2017).

2. Schafer, D. P. & Stevens, B. Microglia function in central nervous system development and plasticity. Cold Spring Harb. Perspect.
Biol. 7, 2020545 (2015).

3. Nott, A. et al. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science 366, 1134-1139
(2019).

4. Leng, E & Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here?. Nat. Rev.
Neurol. 17, 157-172 (2021).

5. Kam, T.-I, Hinkle, J. T., Dawson, T. M. & Dawson, V. L. Microglia and astrocyte dysfunction in Parkinson’s disease. Neurobiol.
Dis. 144, 105028 (2020).

Scientific Reports |

(2024) 14:2153 | https://doi.org/10.1038/s41598-024-52311-0 nature portfolio



www.nature.com/scientificreports/

6. Gosselin, D. et al. An environment-dependent transcriptional network specifies human microglia identity. Science 356, eaal3222
(2017).
7. Pandya, H. et al. Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat. Neurosci. 20,
753-759 (2017).
8. Haenseler, W. et al. A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expres-
sion profile and inflammatory response. Stem Cell Rep. 8, 1727-1742 (2017).
9. Douvaras, P. et al. Directed differentiation of human pluripotent stem cells to microglia. Stem Cell Rep. 8, 1516-1524 (2017).
10. Muffat, J. et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat. Med. 22, 1358-1367 (2016).
11. Takata, K. et al. Induced-pluripotent-stem-cell-derived primitive macrophages provide a platform for modeling tissue-resident
macrophage differentiation and function. Immunity 47, 183-198.e6 (2017).
12. Abud, E. M. et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94, 278-293.e9 (2017).
13. Hasselmann, J. & Blurton-Jones, M. Human iPSC-derived microglia: A growing toolset to study the brain’s innate immune cells.
Glia 68, 721-739 (2020).
14. Hasselmann, J. et al. Development of a chimeric model to study and manipulate human microglia in vivo. Neuron 103, 1016-1033.
€10 (2019).
15. Svoboda, D. S. et al. Human iPSC-derived microglia assume a primary microglia-like state after transplantation into the neonatal
mouse brain. Proc. Natl. Acad. Sci. 116, 25293-25303 (2019).
16. Mancuso, R. et al. Stem-cell-derived human microglia transplanted in mouse brain to study human disease. Nat. Neurosci. 22,
2111-2116 (2019).
17. Carter, A. Y. et al. Liver X receptor agonist treatment significantly affects phenotype and transcriptome of APOE3 and APOE4
Abcal haplo-deficient mice. PLoS One 12, €0172161 (2017).
18. Cui, X. et al. The neurorestorative benefit of GW3965 treatment of stroke in mice. Stroke 44, 153-161 (2013).
19. Savage, J. C. et al. Nuclear receptors license phagocytosis by Trem2+ myeloid cells in mouse models of Alzheimer’s disease. J.
Neurosci. 35, 6532-6543 (2015).
20. Olah, M. et al. A transcriptomic atlas of aged human microglia. Nat. Commun. 9, 539 (2018).
21. Galatro, T. E. et al. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat. Neurosci. 20,
1162-1171 (2017).
22. Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013).
23. Li, B. & Dewey, C. N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC
Bioinform. 12, 323 (2011).
24. Harrow, J. et al. GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res. 22, 1760-1774
(2012).
25. Johnson, W. E,, Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods.
Biostatistics 8, 118-127 (2007).
26. Liu, Y., Hayes, D. N., Nobel, A. & Marron, J. S. Statistical significance of clustering for high-dimension, low-sample size data. J.
Am. Stat. Assoc. 103, 1281-1293 (2008).
27. Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20,
53-65 (1987).
28. Stuart, T. et al. Comprehensive integration of single-cell data. Cell. 177, 1888-1902.e21 (2019).
29. Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).
30. Olah, M. et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat. Com-
mun. 11, 6129 (2020).
31. Sankowski, R. et al. Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat.
Neurosci. 22, 2098-2110 (2019).
32. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587.e29 (2021).
33. Love, M. I, Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome
Biol. 15, 550 (2014).
34. Chen, E. Y. et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14, 128 (2013).
35. Holtman, L. R., Skola, D. & Glass, C. K. Transcriptional control of microglia phenotypes in health and disease. J. Clin. Investig. 127,
3220-3229 (2017).
36. Masuda, T., Sankowski, R., Staszewski, O. & Prinz, M. Microglia heterogeneity in the single-cell era. Cell Rep. 30, 1271-1281 (2020).
37. Bellenguez, C., Kiigiikali, F, Jansen, I., Andrade, V., Moreno-Grau, S., Amin, N. ef al. New insights on the genetic etiology of
Alzheimer’s and related dementia (2020).
38. Fixsen, B. R. et al. SALL1 enforces microglia-specific DNA binding and function of SMADs to establish microglia identity. Nat.
Immunol. 24, 1188-1199 (2023).
39. De Schepper, S. et al. Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of
Alzheimer’s disease. Nat. Neurosci. 26, 406-415 (2023).
40. Mizutani, M. et al. The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adult-
hood. J. Immunol. 188, 29-36 (2012).
41. Howe, C. L., Mayoral, S. & Rodriguez, M. Activated microglia stimulate transcriptional changes in primary oligodendrocytes via
IL-1B. Neurobiol. Dis. 23, 731-739 (2006).
42. Hemonnot, A.-L., Hua, J., Ulmann, L. & Hirbec, H. Microglia in Alzheimer disease: Well-known targets and new opportunities.
Front. Aging Neurosci. 11, 233 (2019).
43. Collins, J. L. et al. Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. J.
Med. Chem. 45, 1963-1966 (2002).
44. Schultz, J. R. et al. Role of LXRs in control of lipogenesis. Genes Dev. 14, 2831-2838 (2000).
45. Courtney, R. & Landreth, G. E. LXR regulation of brain cholesterol: From development to disease. Trends Endocrinol. Metab. 27,
404-414 (2016).
46. Secor McVoy, J. R., Oughli, H. A. & Oh, U. Liver X receptor-dependent inhibition of microglial nitric oxide synthase 2. J. Neuro-
inflamm. 12, 27 (2015).
47. Zhang-Gandhi, C. X. & Drew, P. D. Liver X receptor and retinoid X receptor agonists inhibit inflammatory responses of microglia
and astrocytes. J. Neuroimmunol. 183, 50-59 (2007).
48. Ji, R.-R. et al. Transcriptional profiling of the dose response: A more powerful approach for characterizing drug activities. PLoS
Comput. Biol. 5, 1000512 (2009).
49. Li, J. et al. DRUG-seq provides unbiased biological activity readouts for neuroscience drug discovery. ACS Chem. Biol. 17, 1401-
1414 (2022).
50. Wang, B. & Tontonoz, P. Liver X receptors in lipid signalling and membrane homeostasis. Nat. Rev. Endocrinol. 14, 452-463 (2018).
51. Mou, T., Deng, W., Gu, E,, Pawitan, Y. & Vu, T. N. Reproducibility of methods to detect differentially expressed genes from single-
cell RNA sequencing. Front. Genet. 10, 1331 (2020).
52. Bachiller, S. et al. Microglia in neurological diseases: A road map to brain-disease dependent-inflammatory response. Front. Cell.
Neurosci. 12, 488 (2018).
Scientific Reports|  (2024) 14:2153 | https://doi.org/10.1038/541598-024-52311-0 nature portfolio



www.nature.com/scientificreports/

53. Nugent, A. A. et al. TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge. Neuron 105, 837-854.
€9 (2020).

54. Chen, S.-W. et al. Efficient conversion of human induced pluripotent stem cells into microglia by defined transcription factors.
Stem Cell Rep. 16, 13631380 (2021).

55. Dréger, N. M. et al. A CRISPRi/a platform in human iPSC-derived microglia uncovers regulators of disease states. Nat. Neurosci.
25, 1149-1162 (2022).

56. McQuade, A. et al. Development and validation of a simplified method to generate human microglia from pluripotent stem cells.
Mol. Neurodegener. 13, 67 (2018).

57. Banerjee, A. et al. Validation of induced microglia-like cells (iMG cells) for future studies of brain diseases. Front. Cell. Neurosci.
15, 629279 (2021).

58. Xu, R. et al. Human iPSC-derived mature microglia retain their identity and functionally integrate in the chimeric mouse brain.
Nat. Commun. 11, 1577 (2020).

59. Williams, T., Borchelt, D. R. & Chakrabarty, P. Therapeutic approaches targeting Apolipoprotein E function in Alzheimer’s disease.
Mol. Neurodegener. 15, 8 (2020).

60. Wang, S. et al. Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model. J.
Exp. Med. 217, €20200785 (2020).

61. Schlepckow, K. et al. Enhancing protective microglial activities with a dual function TREM2 antibody to the stalk region. EMBO
Mol. Med. 12, 11227 (2020).

62. Fitz, N. E, Nam, K. N., Koldamova, R. & Lefterov, I. Therapeutic targeting of nuclear receptors, liver X and retinoid X receptors,
for Alzheimer’s disease. Br. J. Pharmacol. 176, 3599-3610 (2019).

63. Zelcer, N. et al. Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proc. Natl. Acad. Sci.
104, 10601-10606 (2007).

64. Buttgereit, A. et al. Salll is a transcriptional regulator defining microglia identity and function. Nat. Immunol. 17, 1397-1406
(2016).

Acknowledgements

The results published here are in part based on data obtained from the AD Knowledge Portal (https://adkno
wledgeportal.org). The results published here are in part based on data obtained from dbGaP (PI: Glass, Insti-
tute: NINDS).

Author contributions

G.R. performed computational analyses and wrote the manuscript draft. Y.Y.,, B.A.,, B.M., JJW,, and A.A.A. per-
formed experiments. G.G., ].H., and Y.L. performed computational analyses. D.H., L.C.B,, S.J.E., A.S., A.A.S.,
R.TE, Y.L, and D.B. supervised the experiments and computational analyses. All authors aided in the interpreta-
tion of results; read, reviewed, and approved the manuscript for publication.

Funding
This research was funded by CAMP4 Therapeutics Corporation and Biogen Inc.

Competing interests

GR., YY,BA,BM, W, GG, JH, AAA,AAS, YL, and D.B. are current employees of, and hold equity
interest in, CAMP4 Therapeutics Corporation. D.H. and S.J.E. are current employees of Biogen Inc. L.C.B. is a
stockholder and former employee of Biogen Inc. A.S. and R.T.E. are former employees of CAMP4 Therapeutics
Corporation.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1038/541598-024-52311-0.

Correspondence and requests for materials should be addressed to G.R. or D.B.
Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Scientific Reports |

(2024) 14:2153 | https://doi.org/10.1038/s41598-024-52311-0 nature portfolio


https://adknowledgeportal.org
https://adknowledgeportal.org
https://doi.org/10.1038/s41598-024-52311-0
https://doi.org/10.1038/s41598-024-52311-0
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Transcriptional characterization of iPSC-derived microglia as a model for therapeutic development in neurodegeneration
	Methods
	Cell culture
	Immunostaining
	RNA isolation, cDNA synthesis, and bulk RNA sequencing library preparation
	Single cell RNA-sequencing library preparation
	LXR agonist treatment
	Time course bulk RNA-seq processing
	Principal components analysis
	Statistical comparison of cell sources using PCA
	Time course single cell RNA-seq processing
	Single cell RNA-seq integration analysis
	LXR agonist treatment bulk RNA-seq processing
	LXR agonist treatment single cell RNA-seq processing

	Results
	Comparison of Commercial iMGL cell bulk transcriptome data with publicly available primary microglia-related datasets
	Single cell transcriptomics identifies multiple subpopulations of cells within Commercial iMGL cells
	Robust bulk transcriptional response of Commercial iMGL cells to LXR pathway agonists
	Differential transcriptional responses to LXR pathway agonists across Commercial iMGL cell subpopulations

	Discussion
	Conclusions
	References
	Acknowledgements


