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Motivation
• Transcriptional enhancers control how genes are 

expressed in specific cell types. 
• Enhancer disruption and misregulation are implicated as 

disease-driving mechanisms. 
• Modalities that specifically target enhancers that control 

disease-associated genes are being pursued to develop 
new drugs for a range of indications. 

• However, it remains a major challenge to link functional 
enhancers to their target genes.

Approach

Results
EPIC outperforms ABC model in predicting enhancer-
promoter pairs (holdout test data)

Conclusions
q EPIC enables accurate cell-type-specific prediction of 

functional E-P interactions using epigenomic data. 
q EPIC outperforms an established method in predicting E-P 

interactions and in linking GWAS loci to causal genes in a 
new cell type. 

q Applying EPIC to diverse human cell types may help 
discover disease-causing genes and enable development 
of novel therapeutics that target enhancers of disease-
related genes. 

Developing enhancer-RNA-based therapeutics

Enhancer-promoter interaction characterization (EPIC) is a 
machine learning model for predicting functional enhancer-
promoter (E-P) pairs. 

K562 enhancer epigenomic 
and chromatin interaction 

features

K562 CRISPR-based 
enhancer perturbation 

screening

EPIC: 
a machine 

learning model

Infer

Enhancer 1 – Gene A:  Yes
Enhancer 2 – Gene A:  No
Enhancer 3 – Gene B:  Yes

…

(Gasperini et al., 2019; Xie et al., 2019)

Basic features
• HiChIP.AnchorSize: AnchorSize = 5kb, 10kb, 15kb, or 20kb (n=4)
• Assay.Position.WindowSize, where Assay=ATAC, H3K27ac, H3K4me1, 

H3K4me3, EP300, CTCF, or Input ChIP;  Position = Enh or TSS; 
WindowSize = 300bp, 500bp, 1kb, 2kb, or 4kb (n=7*2*5=70)

• Genomic distance (n=1)

Feature engineering
APMI = (ATAC.Enh.1kb * EP300.Enh.1kb * H3K4me1.Enh.4kb)1/3 * HiChIP.5kb

Based on APMI, we engineered a new set of features for quantifying the 
relative contribution of an enhancer e to a gene g from the gene perspective or 
enhancer perspective:

where j indexes all the enhancers connected to gene g.

where k indexes all the genes connected to enhancer e.
In addition, we combined these features to form new features.

fracGene!" =
𝐴𝑃𝑀𝐼!"
∑#𝐴𝑃𝑀𝐼#"

fracEnh!" =
𝐴𝑃𝑀𝐼!"
∑$𝐴𝑃𝑀𝐼!$

fracGmE!" = fracGene!" ∗ fracEnh!"

fracGpE!" = fracGene!" + fracEnh!"

apmiGene!" = fracGene!" ∗ 𝐴𝑃𝑀𝐼!"

apmiEnh!" = fracEnh!" ∗ 𝐴𝑃𝑀𝐼!"

apmiGmE!" = fracGmE!" ∗ 𝐴𝑃𝑀𝐼!"

apmiGpE!" = fracGpE!" ∗ 𝐴𝑃𝑀𝐼!"

Machine learning model
• Random forest classification model trained on K562 data

• Five-fold cross-validation

• Genetic algorithm for feature selection

Model AUPR AUROC
EPIC-full 0.613 0.918
EPIC-basic 0.551 0.912
ABC 0.451 0.885

• The area under receiver operating characteristic (AUROC) 
curve of EPIC-full is significantly higher than that of ABC          
(p = 1.6e-10) (DeLong, et al., 1988).

• The AUROC of EPIC-full is significantly higher than that of 
EPIC-basic (p = 0.01), demonstrating the value of feature 
engineering.
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Engineered features rank 
highest in feature 
importance.

EPIC outperforms ABC model in linking GWAS loci to 
causal genes in a new cell type

• We generated epigenomic data in human primary hepatocytes and 
discovered about 30,000 E-P interactions using EPIC. 

• Evaluate prediction of causal genes for liver-related GWAS loci using a 
curated set of “gold standard” locus-gene pairs (Mountjoy, et al., 2021)
Ø Positive: GWAS locus-gene pairs in the gold standard set
Ø Negative: GWAS loci connecting to other genes within 500kb

EPIC
• AUPRC=0.643
• AUROC=0.879
• 80% precision at 

50% sensitivity
ABC model

• AUPRC=0.337
• AUROC=0.877
• 40% precision at 

50% sensitivity

Linking liver-related GWAS loci to putative target genes

ABC = (ATAC.Enh.500bp * H3K27ac.Enh.500bp)1/2 * HiC.5kb (Fulco et al., 2019) 

623 lead variants

1408 fine-mapped variants 464 genes

980 EPIC E-P pairs

Rs7882954, associated 
with LDL cholesterol 
levels, does not overlap 
enhancers in hepatocyte, 
but its fine-mapped 
variants can be linked to 
FMO3, a liver enzyme for 
breaking down nitrogen-
containing compounds
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Lead ASO targeting OTC enhancer RNA shows dose-dependent 
increase in OTC mRNA in hepatocytes across multiple donors

Upregulation of OTC mRNA increases 
ureagenesis in human OTC-deficient hepatocytes
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OTC c.-106C>A (Allele ID 480410, late-onset OTC deficiency) - pathogenic (dbSNP: rs749748052), 
leading to decreased OTC mRNA. Variant associated with 10-25% of normal OTC activity
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Applied EPIC to predict key 
enhancer controlling OTC

Partial loss of function
mutations cause OTC deficiency


